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Abstract. The two-layer square lattice quantum antiferromagnet with spins 1
2 shows a zero-field magnetic

order-disorder transition at a critical ratio of the inter-plane to intra-plane couplings. Adding a uniform
magnetic field tunes the system to canted antiferromagnetism and eventually to a fully polarized state;
similar behavior occurs for ferromagnetic intra-plane coupling. Based on a bond operator spin representa-
tion, we propose an approximate ground state wavefunction which consistently covers all phases by means
of a unitary transformation. The excitations can be efficiently described as independent bosons; in the
antiferromagnetic phase these reduce to the well-known spin waves, whereas they describe gapped spin-1
excitations in the singlet phase. We compute the spectra of these excitations as well as the magnetizations
throughout the whole phase diagram.

PACS. 73.43.Nq Quantum phase transitions – 75.10.Jm Quantized spin models – 75.50.Ee Antiferromag-
netics

1 Introduction

Bilayer quantum magnets have attracted much interest in
experiment and theory in recent years, especially in the
context of quantum Hall systems and of quasi-two dimen-
sional transition metal oxides. On the experimental side,
quantum Hall systems [1] are especially suitable for inves-
tigating zero temperature quantum transitions between
states with different spin magnetizations. In particular,
bilayer quantum Hall systems at filling fraction ν = 2
[2–4] can be tuned between a fully polarized, ferromag-
netic state and a spin singlet ground state as function
of the layer distance. It is now well established [2,5–7]
that there is not a first-order ferromagnet-singlet transi-
tion, but rather an intermediate phase with canted spin
ordering bounded by second-order transitions. The spin
degrees of freedom therefore appear to be well described
by a bilayer quantum spin model [8]. On the other hand,
transition metal oxides like cuprates are known to form
two-dimensional structures where the low-energy spin dy-
namics is well described by a Heisenberg model. These
materials consist either of a single plane or a stack of
copper oxide planes with intervening charge reservoir
layers. Prominent examples for bilayer compounds are
YBa2Cu3O7−x and Bi2Sr2CaCu2O8+δ which show a num-
ber of unusual properties [9]. Note that in the high-
temperature superconductors the interlayer coupling is
relatively weak compared to intralayer processes; undoped
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bilayer systems like YBa2Cu3O6 are not driven into a sin-
glet ground state. However, the latter is also possible: re-
cently the material BaCuSi2O6 containing strongly cou-
pled bilayers has been discovered and investigated [10], it
shows a spin gap due to strong antiferromagnetic exchange
interaction between the two layers.

On the theoretical side, the bilayer Heisenberg mag-
net has attracted a lot of interest [8,11–25] because it is
a simple model for studying the interplay of long-range
magnetic order and quantum disorder. Quantum-critical
behavior associated with such a magnetic instability has
been observed, e.g., in the cuprate superconductors over
a wide range of doping levels and temperatures [26].

We start by describing the bilayer quantum Heisen-
berg model. The system consists of two planes of nearest-
neighbor S = 1

2 Heisenberg models with coupling constant
J‖ which can be either antiferromagnetic (J‖ > 0) or fer-
romagnetic (J‖ < 0). The spins of corresponding sites of
each layer are coupled antiferromagnetically with a cou-
pling constant J⊥ > 0. The Hamiltonian reads

H = J⊥
∑
i

Si1 ·Si2 + J‖
∑
〈ij〉m

Sim ·Sjm −B·
∑
im

Sim (1)

where Sim are the electronic spin operators. The index i
denotes rungs of the bilayer lattice, and m = 1, 2 labels
the planes. The summation 〈ij〉 runs over pairs of nearest-
neighbor rungs. The external magnetic field B is homoge-
neous, the Zeeman interaction factors gJµB (gyromagnetic
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Fig. 1. Ground state phase diagram of H (1) as determined
from series expansion studies, see references [8,15,20]. The
arrows denote the spin orientations, the in-plane ordering
wavevectors are given in brackets. The dashed lines are the
boundaries of the singlet phase obtained from the lowest-order
boson approximation as described in Section 3.

ratio and Bohr magneton) have been absorbed in the def-
inition of B.

In the following, we briefly discuss the main features
of the ground-state phase diagram of the model (1), which
has been given in two recent papers [8,15] and is shown
in Figure 1. In the absence of a magnetic field the bilayer
Heisenberg antiferromagnet is known to exhibit quantum
phase transitions between a disordered singlet phase and
long-range ordered (LRO) phases. In the limit of strong
interplanar coupling, J⊥ � |J‖|, the system consists of
weakly interacting rung singlets, and the ground state pos-
sesses the full symmetry of the Hamiltonian. The spin ex-
citations are triplet modes with a minimum energy gap
∆, there is no magnetic LRO. In the opposite case of
large |J‖|/J⊥, the system possesses LRO at T = 0, the
ordering wavevector is (0, 0, π) [(π, π, π)] for ferromag-
netic (antiferromagnetic) J‖. The SU(2) symmetry of H
is broken, the low-lying excitations are doubly-degenerate
Goldstone spin waves. The quantum transitions between
the singlet and the two ordered phases are of the O(3)
universality class [11,12,18,23] and occur at critical ra-
tios (J⊥/J‖)c1,2. For the antiferromagnetic case, quan-
tum Monte Carlo calculations [11,12,25], series expan-
sions [13], and the diagrammatic Brueckner approach [14]
yield an order-disorder transition point of (J‖/J⊥)c1 =
0.396. Bond-operator mean-field theory applied to the bi-
layer Heisenberg AF [15,16] gives a transition point of
(J‖/J⊥)c1 = 0.435. Note that Schwinger boson mean-
field theory [17] predicts a value of (J‖/J⊥)c1 ≈ 0.22,
and also self-consistent spin-wave theory [18,19], which
yields (J‖/J⊥)c1 ≈ 0.23, fails to reproduce the numer-
ical results. As Chubukov and Morr [18] have pointed
out this discrepancy is due to the neglect of longitudinal
spin fluctuations in the conventional spin-wave approach.
For ferromagnetic J‖ < 0, the series expansion result is

(J‖/J⊥)c2 = −0.435 which agrees well with the value from
bond-operator mean-field theory.

For large enough external field, B = Bez, the exact
ground state is the fully polarized ferromagnetic (FPF)
state, i.e., the state with all spins pointing in the direc-
tion of the applied field. The first excited state is a single
spin flip and its excitation energy can be determined ex-
actly: ωk = B−J⊥−J‖(2−coskx−cos ky). For ferromag-
netic (antiferromagnetic) intra-plane coupling J‖ the min-
imum of ωk is located at in-plane wavevector Q = (0, 0)
[Q = (π, π)]. The stability boundary of the FPF state is
given by the point where the minimum excitation energy
vanishes, this yields the exact expression for the upper
critical field, Bc2 = J⊥ [Bc2 = 4J‖+J⊥] for ferromagnetic
(antiferromagnetic) J‖. Single spin flips condense at this
boundary, leading to canted spin ordering. The transition
is of second order and in the universality class of the dilute
Bose gas quantum-critical point with z = 2 [6–8,15,27].
For intermediate magnetic fields a canted spin phase is
established which breaks the rotational symmetry of the
Hamiltonian about the z axis, leading to one linear dis-
persing Goldstone mode corresponding to a rotation of
the order parameter in the x-y plane. Both the expecta-
tion value of the uniform magnetization in field direction
and the Q-staggered magnetization perpendicular to the
field are non-zero.

For small uniform fields, B < ∆, the disordered spin
singlet ground state discussed above remains unchanged
due to its finite excitation gap ∆. The effect of the mag-
netic field is simply to split the degenerate triplet exci-
tations due to Zeeman coupling, ωk → ωk −mB, where
m = −1, 0, 1 is the Sz quantum number. The stability
boundary of the singlet phase is determined by the vanish-
ing of the excitation gap; the corresponding transition is
in the same universality class as the boundary of the fully
polarized phase, also leading to the same canted phase
with ordering vector Q.

The purpose of the present paper is to propose a trans-
formation of the usual bond operator basis which allows an
efficient description of all phases described above. In the
simplest approximation, the excitations can be described
as independent bosons. In the limit of weak inter-plane
coupling, the approach then reduces to linear spin-wave
theory, with the surplus of correctly describing the gapped
longitudinal amplitude mode which corresponds to inter-
plane quantum fluctuations and becomes important near
the transition to a singlet state. The paper is organized
as follows: In Section 2 we introduce the bond operator
transformation which is employed to describe the mag-
netic phases of the bilayer model. Section 3 is devoted to
the boson approximation which can be used to diagonalize
the Hamiltonian via a Bogoliubov transformation. Results
for ground state magnetizations and excitation spectra are
given in Section 4. A summary and discussion of possible
improvements beyond the independent boson approxima-
tion close the paper.
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2 Generalized bond operators

The four spin states per rung can be conveniently de-
scribed via a bond operator representation [28] of the two
spins Si1 and Si2 of each rung i. We introduce bosonic
bond operators for creation of a singlet and three triplet
states out of the vacuum |0〉:

s†i |0〉=
1√
2

(c†i1,↑c
†
i2,↓−c

†
i1,↓c

†
i2,↑) |0〉 =

1√
2

(|↑↓〉−|↓↑〉)

t†ix |0〉=
−1√

2
(c†i1,↑c

†
i2,↑−c

†
i1,↓c

†
i2,↓) |0〉 =

−1√
2

(|↑↑〉−|↓↓〉)

t†iy |0〉=
i√
2

(c†i1,↑c
†
i2,↑+c

†
i1,↓c

†
i2,↓) |0〉 =

i√
2

(|↑↑〉+|↓↓〉)

t†iz |0〉=
1√
2

(c†i1,↑c
†
i2,↓+c

†
i1,↓c

†
i2,↑) |0〉 =

1√
2

(|↑↓〉+|↓↑〉)

(2)

where c†imσ are creation operators for electrons at site im
with spin σ. In terms of the bond operators the spin op-
erators can be expressed as

Sαi1,2 =
1
2

(±s†i tiα ± t
†
iαsi − iεαβγt†iβtiγ). (3)

A local constraint of the form

s†isi +
∑
α

t†iαtiα = 1 (4)

has to be imposed on each rung to ensure that the physical
states are either singlets or triplets. The ground state for
vanishing intra-plane coupling, J‖ = 0, is given by the
product state of singlet bonds on each rung, i.e.,

|φ0〉 =
∏
i

s†i |0〉 . (5)

In this limit, the excitations are localized triplets with an
energy gap J⊥.

Substituting the bond operator representation of the
spin operators (3) into the original Heisenberg model we
obtain the following Hamiltonian [29–31]:

H0 = −3
4
J⊥
∑
i

s†isi +
1
4
J⊥
∑
iα

t†iαtiα ,

H1 =
J‖
2

∑
〈ij〉,α

(t†iαs
†
jtjαsi + h.c.)

+
J‖
2

∑
〈ij〉,α

(t†iαt
†
jαsisj + h.c.)

+
J‖
2

∑
〈ij〉,α,β

(t†iαt
†
jβtjαtiβ − t

†
iαt
†
jαtiβtjβ)

+ iB
∑
i

(t†ixtiy − t
†
iytix). (6)

In the following the basic idea of describing the vari-
ous magnetic phases will be discussed. Starting from the

singlet phase, the magnetically ordered phases can be de-
scribed by different triplet boson condensates [18,31,32].
The FPF phase with polarization in z direction requires a
condensate of (tx+ity) bosons; a Néel state with staggered
magnetization perpendicular to the field corresponds to a
condensate of tx or ty on top of the singlet state. Neglect-
ing inter-rung fluctuations, an ansatz wavefunction can be
written as

|φ̃0〉 ∼ exp(iµ
∑
i

t†iytix) exp(λ
∑
i

eiQRit†ixsi)|φ0〉

=
∏
i

(
s†i + λeiQRi(t†ix + iµt†iy)

)
|0〉. (7)

The real parameters λ and µ are the condensation ampli-
tudes, Q denotes the in-plane ordering wavevector. This
ansatz contains two subsequent unitary transformations
of the singlet product state |φ0〉 (5): the λ term creates a
spin-density-wave condensate with ordering vector Q and
quantization axis in x direction (thus explicitely breaking
the U(1) symmetry of the z axis rotation), the µ term in-
troduces canting and a non-zero z magnetization into this
state. For µ = 0 and Q = (π, π) which corresponds to
J‖ > 0 and B = 0, this wavefunction reduces to a state
interpolating between the singlet and the Néel state; it
has been recently used to describe the dynamics of holes
doped into a bilayer system [31]. A finite external field
B larger than the spin gap will lead to a finite uniform
magnetization described by finite µ; for large B the sys-
tem is driven into a fully polarized state with λ→∞ and
µ = 1. The intervening canted phase will be characterized
by finite, non-zero λ and 0 < µ < 1.

A related product state has recently been employed
for the description of bilayer quantum Hall systems [7],
with the inclusion of charge fluctuations and additional
disorder, but without inter-rung spin fluctuations. We will
show here that such spatial correlations can be efficiently
described in a simple harmonic theory.

For a proper description of fluctuations around the
product state |φ̃0〉 (7) it is convenient to transform the
basis states on each rung. We replace the basis operators
{si, tiα} by

s̃†i =
1√

1 + λ2

(
s†i +

λeiQRi√
1 + µ2

(t†ix + iµt†iy)

)
,

t̃†ix =
1√

1 + λ2

(
−λeiQRis†i +

1√
1 + µ2

(
t†ix + iµt†iy

))
,

t̃†iy =
1√

1 + µ2

(
t†iy + iµt†ix

)
,

t̃†iz = t†iz . (8)

The constraint (4) takes the form s̃†i s̃i +
∑
α t̃
†
iα t̃iα = 1.

The new product state |φ̃0〉 can now be written as

|φ̃0〉 =
∏
i

s̃†i |0〉 (9)
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which reduces to the singlet product state for λ = 0. Ex-
citations out of this state are given by t̃†iαs̃i. At this point
it is worth emphasizing that the use of a single conden-
sate (of “mixed” s̃ bosons) and the basis transformation
to excitation operators being orthogonal to s̃ is crucial for
a correct description of the ordered phases.

We can now insert the new basis operators into (6) and
obtain the expression for the transformed Hamiltonian H̃:

H̃0 =
∑
iα

H(α;α) t̃†iα t̃iα +
∑
i

H(s; s) s̃†i s̃i

+
∑
i

H(x; y) i(t̃†ix t̃iy − t̃
†
iy t̃ix) ,

H̃1 =
∑
i

H(x; s) (t̃†ixs̃i + s̃†i t̃ix)

+
∑
i

H(y; s) i(t̃†iy s̃i − s̃
†
i t̃iy)

+
∑
〈ij〉

H(ss; ss) s̃†i s̃
†
j s̃is̃j

+
∑
〈ij〉α

H(αα; ss) t̃†iα t̃
†
jαs̃is̃j + h.c.

+
∑
〈ij〉

H(xy; ss) t̃†ixt̃
†
jy s̃is̃j + h.c.+ i↔ j

+
∑
〈ij〉α

H(αs; sα) t̃†iα t̃jαs̃
†
j s̃i + h.c.

+
∑
〈ij〉

H(xs; sy) t̃†ixt̃jy s̃
†
j s̃i + h.c.+ i↔ j

+
∑
〈ij〉

H(xs;xs) t̃†ixt̃ixs̃
†
j s̃j + i↔ j

+
∑
〈ij〉

H(ys; ys) t̃†iy t̃iy s̃
†
j s̃j + i↔ j

+
∑
〈ij〉

H(xs; ys) t̃†ixt̃iy s̃
†
j s̃j + i↔ j

+
∑
〈ij〉

H(xs; ss)
(
t̃†ixs̃is̃

†
j s̃j + s̃†j t̃ixs̃

†
j s̃j
)

+ i↔ j

+
∑
〈ij〉

H(ys; ss)
(
t̃†iy s̃is̃

†
j s̃j + s̃†j t̃iy s̃

†
j s̃j
)

+ i↔ j

+ H̃rest. (10)

The coefficients H(·, ·) depend on the basis parameters
λ and µ as well as on J‖, J⊥, and B; explicit expres-
sion are given in Appendix A. H̃rest contains more com-
plicated terms with three and four excitations. In the case
of µ = 0 the Hamiltonian reduces to the Hamiltonian de-
rived for the zero-field case [31]. It can be seen that H̃1

contains creation, hopping, and conversion terms of the
three types of excitations {t̃ix, t̃iy, t̃iz}. Contrary to the
original Hamiltonian H1 where the triplet excitations can

only occur in pairs, here also single t̃ix and t̃iy excitations
can be created. The effect of these terms is directly re-
lated to the basis parameters λ and µ and will be used to
determine their values. In contrast to the case of zero field
where only pairs of the same type of excitation are cre-
ated out of |φ̃0〉, for any finite B also pairs of the structure
t̃†ixt̃
†
jy s̃is̃j are present.
The exact but lengthy representation (10) can now be

used for a variety of approximation schemes. The most
important point is to choose values for λ and µ in such a
way that the product state |φ̃0〉 (9) is a reasonable start-
ing point for approximations. Fluctuations are described
by the hard-core bosons {t̃ix, t̃iy, t̃iz}, and a “good” choice
for |φ̃0〉 should ensure that the ground-state density of
the bosons is small. The lowest-order approximation cor-
responds to independent bosons with a bilinear Hamilto-
nian, it is formally given by ignoring both the hard-core
constraint (4) as well as H̃rest, and assuming a complete
condensation of the generalized “singlet”, i.e., 〈s̃〉 = s̃ = 1.
This approximation will be discussed in the following sec-
tions, it is shown to correspond to usual linear spin-wave
theory in the decoupled plane limit with B = 0. Pos-
sible improvements include (i) taking into account the
site-averaged constraint by introduction of a chemical po-
tential λ0, and treating λ0 and s̃ as variational param-
eters in the spirit of bond-operator mean-field theory
[15,16], (ii) a mean-field-like factorization of the higher-
order boson interaction terms (iii) a diagrammatic treat-
ment of the hard-core boson interaction in the framework
of Brueckner theory [14]. Independently, methods focusing
on higher-order local excitations based on cumulants [31]
or the coupled-cluster technique [33] known from quantum
chemistry may be applied to (10).

3 Independent boson approximation

In this and the following section, we will discuss the
lowest-order boson approximation for the Hamiltonian
(10). For this purpose we treat the excitations {t̃ix, t̃iy , t̃iz}
as independent bosons, i.e., neglect the constraint which
restricts the Hilbert space per rung. The (generalized) sin-
glet is assumed to fully condense, 〈s̃〉 = 1. It is known from
the zero-field case [14,31] that this approximation is con-
trolled by the existence of a small parameter, namely the
density of (generalized) triplet excitations 〈t̃†iα t̃iα〉. With
this in mind, all terms of the Hamiltonian containing more
than two excitation operators t̃iα will be neglected.

The parameters of the unitary transformation λ and
µ have not yet been determined. Within the approxima-
tion of independent bosons these parameters are chosen so
that the prefactors of the terms creating single t̃iα bosons
out of |φ̃0〉 vanish. The physical meaning of this is easily
understood: terms creating single bosons would change
the condensate densities (and therefore alter the effective
values of λ and µ), however, our aim is to fully account
for the boson condensation by the transformed basis state
|φ̃0〉. One arrives at the following non-linear equations for



T. Sommer et al.: Magnetic properties and spin waves of bilayer magnets in a uniform field 333

the basis parameters λ and µ:

λ2 =

[
± 4J‖ − J⊥(1+µ2) + 2Bµ

](
1+µ2

)[
± 4J‖ + J⊥(1+µ2)− 2Bµ

](
1+µ2

)
+ 8J‖µ2

0 = B(1−µ4)(1+λ2)∓ 4J‖µ(1+µ2)− 4J‖λ2µ(1−µ2)

(11)

where upper (lower) sign refers to J‖ > 0 (J‖ < 0). No-
tably, these equations also follow from a variational princi-
ple, i.e., they are obtained by minimizing 〈φ̃0|H|φ̃0〉 with
respect to λ and µ. This clarifies the meaning of |φ̃0〉 as
best variational state without inter-rung fluctuations.

The system of nonlinear equations (11) allows for the
computation of the phase boundaries. The rotational in-
variant spin singlet phase is characterized by the value
λ = 0. Solutions for µ are then obtained for B < Bc1,
where Bc1 is the stability boundary of the singlet phase:

Bc1 =
√
J⊥ − 4J‖ (J‖ > 0) ,

Bc1 =
√
J⊥ + 4J‖ (J‖ < 0) . (12)

It can be seen that the singlet phase exists for |J‖/J⊥| <
0.25. At the critical ratio (J‖/J⊥)c = ±0.25 the charac-
ter of the zero-field ground state changes from spin sin-
glet to long-range order. As discussed in reference [23],
this quasi-classical value of (J‖/J⊥)c is necessarily smaller
than the exact one (quantum fluctuations stabilize the
inter-plane singlet phase); as noted in the introduction
the critical values obtained by large-scale numerics are
(J‖/J⊥)c1 = 0.396 and (J‖/J⊥)c2 = −0.435. The inclu-
sion of higher order terms beyond the present linear “spin-
wave” approximation leads to a better agreement with the
numerical values for the critical coupling ratio [31].

For values of the field with Bc1 < B < Bc2 the ground
state is a canted phase with 0 < µ < 1. The phase bound-
ary to the ferromagnetic phase is obtained when the limit
λ→∞ and µ→ 1 is taken. We arrive at an upper critical
field of

Bc2 = J⊥ + 4J‖ (J‖ > 0) ,
Bc2 = J⊥ (J‖ < 0) (13)

which are the exact results.
We can now proceed with analyzing the fluctuations

around |φ̃0〉. With the approximations described above,
we arrive at a bilinear Hamiltonian:

H̃ =
∑
kα

Akαt̃
†
kαt̃kα

+
1
2

∑
kα

Bkα

(
t̃†kαt̃

†
−kα + t̃kαt̃−kα

)
+
∑
k

Ck

(
t̃†kxt̃ky − t̃

†
ky t̃kx

)
+
∑
k

Dk

(
t̃†kxt̃

†
−ky − t̃kxt̃−ky

)
. (14)

Here, t̃kα are the modified basis operators which have been
Fourier transformed with respect to the in-plane momen-
tum k. The expressions for the coefficients Ak, . . . , Dk can
be found in Appendix B. The Hamiltonian (14) can be eas-
ily diagonalized with a Bogoliubov transformation, leading
to new generalized excitations denoted by τkα, α = x, y, z.
The ground state |ψ0〉 is simply the vacuum of the bosons
τkα. The excitation energies of these bosons are given by

Ω2
kx,y =

1
2
(
ω2

kx + ω2
ky − 2C2

k + 2D2
k

)
±
{

1
4
(
ω2

kx + ω2
ky − 2C2

k + 2D2
k

)2
− ω2

kxω
2
ky −

(
C2

k −D2
k

)2
+ 2

(
(AkxAky −BkxBky)

(
C2

k +D2
k

)
−2 (AkxBky −AkyBkx)CkDk)

} 1
2

,

Ω2
kz = A2

kz −B2
kz , (15)

the terms ω2
kx := A2

kx − B2
kx and ω2

ky := A2
ky − B2

ky are
simply the eigenenergies of the zero field limit. In zero
field, we find either three degenerate gapped modes in the
singlet phase, or two degenerate transverse acoustic spin-
wave modes and a gapped spin-amplitude mode in the
long-range ordered phases. A finite external field lifts these
degeneracies; the canted phase supports a single Gold-
stone mode due to the broken U(1) symmetry. Explicit
results for the dispersion relations are shown in the next
section.

Finally the ground state energy per site is given by the
expression

Eg =
〈ψ0|H̃|ψ0〉

2N
= E0 +

1
2N

∑
kα

(Ωkα −Akα) (16)

where E0 is the energy per site of the product state |φ̃0〉,
E0 = 〈φ̃0|H|φ̃0〉/2N .

The described harmonic approximation preserves
SU(2) symmetry in the singlet phase; in the ordered
phases it can be considered as linear spin-wave theory
for the bilayer problem with inclusion of longitudinal spin
fluctuations [18,32,34] – these are crucial for describing
the magnetic properties near the boundary to the sin-
glet phase. For zero field and vanishing inter-plane cou-
pling, B = J⊥ = 0, the results of the present approach
are equivalent to the ones of linear spin-wave theory. For
instance, in the antiferromagnetic case, the magnetization
takes 60 % of its classical value. There, the gapped am-
plitude mode is dispersionless and does not influence the
ground state properties, and its spectral weight in neutron
scattering vanishes.

4 Ground state properties and spin
excitations

In this section we present the results obtained from the in-
dependent boson approximation. We discuss the staggered
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Fig. 2. Uniform (top) and staggered magnetization (bottom)
as function of the external magnetic field B/Bc2. The ratio of
the coupling constants J‖/J⊥ = 0.2 which places the zero-field
system into the interlayer singlet phase. Solid: present approx-
imation (independent bosons). Dashed: product wavefunction
|φ̃0〉 only.

and uniform magnetizations and the dispersion relations
as functions of the external magnetic field in order to char-
acterize the various magnetic phases. For this purpose we
consider the system for small intra-plane coupling |J‖|,
i.e., in the singlet phase, as well as for weakly coupled
planes (small J⊥).

4.1 Magnetization

We start with the uniform and staggered magnetizations
which are obtained as expection values of the correspond-
ing spin operators

Mu =
1
N

∑
i

〈Szi1 + Szi2〉 ,

Mst =
1
N

∑
i

〈Sxi1 − Sxi2〉eiQRi (17)

where Q = (0, 0) [Q = (π, π)] for ferromagnetic (antiferro-
magnetic) intra-plane coupling J‖ as above. The staggered
magnetization in the zero-field case has been calculated
earlier (see Fig. 2 of Ref. [31]); it shows a good overall
agreement with the series expansion data of reference [13]
if plotted as function of (J‖/J⊥)/(J‖/J⊥)c – the critical
coupling ratio itself is underestimated in the independent
boson approach as discussed above.

Turning to the finite-B case, we show uniform and
staggered magnetization in Figures 2–5. Both are zero in
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Fig. 3. As Figure 2, but in the singlet phase with strongly
coupled ferromagnetic planes with J‖/J⊥ = −0.2.
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Fig. 4. As Figure 2, but for weakly coupled antiferromagnetic
planes with J‖/J⊥ = 10.

the singlet phase, B < Bc1. Varying the magnetic field
from the lower critical value Bc1 to the upper critical field
Bc2 the uniform magnetization increases from 0 and satu-
rates at Bc2, whereas the staggered magnetization is non-
zero only in the canted phase, Bc1 < B < Bc2, passing a
maximum in between (Figs. 2, 3). Near the critical fields
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Fig. 5. As Figure 2, now at the zero-field critical point be-
tween the singlet and “ferromagnetic” Q = (0, 0) Néel phase,
J‖/J⊥ = −0.25 (see Fig. 1).

for B & Bc1 or B . Bc2, we have Mu ∼ |B − Bc1,2| and
Mst ∼ |B −Bc1,2|1/2.

For small J⊥, i.e., in the zero-field ordered regime, the
staggered magnetization Mst is finite at B = 0 but is sup-
pressed if B is increased up to the critical field Bc2, see
Figure 4. Interestingly, Mst increases (!) at small fields –
here the suppression of quantum fluctuations due to the
field (e.g. one Goldstone mode becomes gapped) has a
stronger effect than the change in the canting angle. The
uniform magnetization again increases continuously with
B until it saturates at Bc2. For illustration, we also show
data for J‖/J⊥ = −0.25 which places the model at the
zero-field critical point between the singlet and Q = (0, 0)
Néel phases. Here, Mu increases with B2 whereas Mst

raises linearly with the applied field, in agreement with
the results of reference [6].

In Figures 2–5, we have also shown the magnetization
values calculated with the product state |φ̃0〉 only (dashed
lines) – this is equivalent to neglecting intra-plane (inter-
rung) fluctuations altogether. It can be seen that the ef-
fect of these spatial quantum fluctuations is largest for
antiferromagnetic J‖ and large staggered magnetization,
this includes the case of the single-layer antiferromagnet
where quantum fluctuations are known to reduce Mst by
40%. In contrast, in both the ferromagnetic regime (where
quantum fluctuations are weak in general) and near the
spin singlet phase (where inter-plane quantum fluctua-
tions dominate), the effect of intra-plane fluctuations is
weaker.

All phase transitions found are of second order, as ex-
pected, except for the special point J‖ = 0, B = J⊥,
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Fig. 6. Dispersion relations of the magnetic excitations for
strongly coupled antiferromagnetic planes, J‖/J⊥ = 0.2. The
three panels show the three modes for different magnetic fields
B̃ = B/Bc2 = B/(4J‖ + J⊥), (a) B̃ = 0, (b) B̃ = 0.44 (here

B = Bc1), (c) B̃ = 1 (B = Bc2).

where the singlet–FPF transition is a simple level crossing
for independent rungs. Due to the mean-field character
of the present approximation, all critical exponents have
mean-field values. (It is easily seen that the present har-
monic approximation becomes exact in the limit of large
in-plane coordination number, see also Ref. [23].) For
the actual two-dimensional model, these mean-field ex-
ponents are incorrect for the zero-field transitions which
have z = 1 and therefore obey the non-trivial exponents
of a three-dimensional classical Heisenberg model, but
they apply (ignoring logarithmic corrections) to the field-
induced transitions from and to the canted phase which
are at the upper-critical dimension (z = 2) [6–8,27].

We note that the phase boundaries obtained in
Section 3 using the product state |φ̃0〉 are not changed by
the inclusion of inter-rung fluctuations at the lowest bo-
son level employed here. It is, however, clear that boson
interactions change this picture [14].

4.2 Magnetic excitations

We continue with the discussion of the dispersion rela-
tions of the magnetic excitations, plotted in Figures 6–9,
for a number of values of the external field. In Figure 6 we
show data for strongly coupled planes and antiferromag-
netic J‖. In the zero-field limit (Fig. 6a) the excitations
are threefold degenerate, gapped, and have a dispersion
minimum at Q = (π, π). At finite B, the degeneracy is
lifted due to the Zeeman coupling. At the lower critical
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Fig. 7. As in Figure 6, but for ferromagnetic in-plane coupling,
J‖/J⊥ = −0.2. Note that the magnetic field values in units of

Bc2 are again B̃ = 0, 0.44, and 1, but here Bc2 = J⊥, i.e.,
B̃ = B/J⊥.

field, B = Bc1 (Fig. 6b), the excitation gap closes, and
there is a single critical mode with quadratic dispersion.
In the canted phase, Bc1 < B < Bc2 (not shown), there is
a single Goldstone mode with a linear dispersion around
Q = (π, π), corresponding to the broken U(1) symme-
try. At the phase boundary to the ferromagnetic (FPF)
phase, B = Bc2 (Fig. 6c), the lowest mode becomes again
critical with a quadratic dispersion (note z = 2 at both
field-induced transitions). As the magnetic field is further
increased, a gap opens and the FPF phase is stabilized. In
the FPF phase, one of the excitations is dispersionless,
corresponding to a longitudinal local fluctuation which
turns both spins on a rung down. In the case of ferro-
magnetic in-plane coupling, J‖ < 0, the picture is similar,
but the dispersion minimum is now found at Q = (0, 0),
see Figure 7.

The results for weakly coupled antiferromagnetic
planes are plotted in Figure 8. We start with a discus-
sion of the zero field case, shown in Figure 8a. Contrary
to the case of strong inter-plane coupling there is now
a nearly dispersionless excitation – this is the before-
mentioned gapped (longitudinal) spin-amplitude mode. It
corresponds to flipping both spins on a single rung and
has a quantum number Sz = 0, consequently, it remains
unchanged (to linear order) when the magnetic field is
turned on. The two other modes are degenerate Gold-
stone bosons in the zero-field limit with a linear dispersion
around the ordering wavevector Q = (π, π). For decoupled
planes, J⊥ → 0, momenta (0, 0) and (π, π) are degener-
ate, and for small J⊥ the gap at (0, 0) is proportional to
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Fig. 8. As in Figure 6, here for weakly coupled antiferromag-
netic planes, J‖/J⊥ = 10.

J⊥. With increasing J⊥, the spin-amplitude mode acquires
a dispersion, until it merges with the acoustic spin-wave
modes at the zero-field critical point, leading to a degen-
erate triplet of critical modes with linear dispersion (not
shown). Turning to the case of a finite uniform field B, we
note that arbitrarily small B establishes canted ordering
here. For 0 < B < Bc2 (Fig. 8b), the mode degeneracy
is again lifted and leaves a single gapless Goldstone exci-
tation with linear dispersion. At B = Bc2 (Fig. 8c), this
mode becomes critical with quadratic dispersion as dis-
cussed above.

Finally, Figure 9 shows dispersions for the coupling
ratio corresponding to the zero-field ferromagnetic critical
point, J‖/J⊥ = −0.25. For B = 0 (Fig. 9a), we have a
triplet of degenerate critical modes with minimum (con-
densation) wavevector Q = (0, 0) and a linear dispersion
reflecting z = 1. With application of a finite field, we enter
directly the canted phase with a single Goldstone mode,
so for Figures 9b, c the above discussion applies.

At this point a remark about the physics of longitu-
dinal magnon mode is in order. As mentioned, this mode
is not included in conventional spin-wave theory for the
antiferromagnet. The reason is that spin-wave theory has
the character of a 1/S expansion, and longitudinal fluctua-
tions are suppressed in the S →∞ limit. This implies that
any theory based on a (finite-order) large-S expansion can
never treat longitudinal and transverse spin fluctuations
on equal footing [18], which is, however, crucial near the
critical point in the bilayer model where longitudinal and
transverse fluctuations become indistinguishable. In con-
trast, our approach preserves the quantum nature of the
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Fig. 9. As in Figure 7, finally for the coupling constant ratio
J‖/J⊥ = −0.25, corresponding to the zero-field critical point
on the ferromagnetic side of the phase diagram (Fig. 1).

S = 1/2 spins, but has the spirit of a large-z theory, where
z is the in-plane coordination number.

We close this section with some general remarks. The
lowest-order boson approximation neglects interactions
between the modes, therefore all excitations including the
amplitude mode are undamped, and no decay into the
two-particle continuum is possible. The description of such
damping processes requires the inclusion of fourth-order
boson terms, and is deferred to future investigation.

The low-energy properties of the spin excitations ob-
tained in the present work are in agreement with hydro-
dynamical considerations. The spin-wave velocity c in an
ordered phase, defined as Ωq = c |q−Q| near the order-
ing wavevector Q, has to fulfill the relation c2 = ρs/χ⊥
where ρs is the spin stiffness and χ⊥ denotes the uni-
form susceptibility for a field perpendicular to the or-
dering direction (here x). At the zero-field transitions,
J‖/J⊥ = (J‖/J⊥)c1,2, both ρs and χ⊥ vanish whereas c
remains non-critical as expected for an O(3) transition.
This behavior is correctly reproduced in our calculations
(Figs. 5 and 9), note χ⊥ = dMu/dB. (In contrast, at
the field-induced transition points the spin-wave velocity
c vanishes, leading to a quadratically dispersing critical
mode at B = Bc1,2.)

The special properties of the multicritical points at
B = 0, J‖/J⊥ = (J‖/J⊥)c1,2 have been discussed in refer-
ence [8]. One consequence of universal scaling arguments
is that the energy gap of the B = 0 amplitude mode in the
ordered phase close to the transition is given by the spin
stiffness ρs; this result is special to d = 2 where ρs has the
dimension of energy. We also note that a well-defined am-

plitude mode requires that the low-energy theory for the
zero-field ordering transition is below its upper-critical di-
mension (here dc,up = 3) so that the interaction term of
the effective φ4 theory is relevant in the renormalization
group sense. Our mean-field theory gives an amplitude
mode independent of the spatial dimension d, but from the
above it is clear that even the low-energy part of this mode
will be overdamped from boson interactions in higher di-
mensions, d ≥ 3.

The results obtained with the present method for van-
ishing inter-plane coupling, J⊥ = 0, are consistent with
recent calculations using linear spin-wave theory [35] for
a single-plane antiferromagnet.

5 Conclusion

In this paper, we have proposed a unitary transforma-
tion of bond-boson operators appropriate for the descrip-
tion of various magnetic phases, especially with canted
spin order. The resulting boson Hamiltonian has been ob-
tained exactly; it allows for a number of approximations.
We have applied this method to the bilayer Heisenberg
magnet in a uniform external field. Using the lowest-order
approximation of free bosons we obtained analytic ex-
pressions for the phase boundaries, the quasiparticle ex-
citations and both uniform and staggered magnetization.
The harmonic approximation is controlled by the small-
ness of the density of generalized bosonic triplet excita-
tions, this parameter has been found to be smaller than
0.15 throughout the whole phase diagram. In the limit of
vanishing inter-plane coupling, the boson approximation
reduces to linear spin-wave theory; near the transition to
the singlet phase it has the advantage of incorporating lon-
gitudinal spin fluctuations. The phase diagram (Fig. 1) is
adequately described; the locations of the zero-field transi-
tions are (J‖/J⊥)c1,2 = ±0.25, these values are smaller in
magnitude than the ones obtained by more accurate nu-
merical and analytical methods ((J‖/J⊥)c1 = 0.396 and
(J‖/J⊥)c2 = −0.435). These deviations arise from the
neglect of boson interactions which stabilize the singlet
phase. The approach presented here preserves all general
properties expected from hydrodynamics, i.e., it gives the
correct number and low-energy dispersion of Goldstone
modes in the symmetry-broken phases.

The present approximation can be systematically im-
proved as discussed in Section 2. Two promising possibil-
ities are either the inclusion of fourth-order boson terms
as in non-linear spin-wave theory or the treatment of the
hard-core boson constraint by introduction of an (infinite)
on-site repulsion which is treated diagrammatically using
Brueckner theory [14]. (The latter approach yields very
accurate results for the zero-field bilayer antiferromag-
net.) We expect that the inclusion of interactions will in-
duce a damping of the high-energy spin excitation modes,
but will not change the low-energy properties presented
in Section 4 which are protected by symmetry consid-
erations and hydrodynamics. Once interactions are in-
cluded, a detailed study of the dynamic structure factor
as measured in inelastic neutron scattering, including the
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spectral weights of the excitation modes described here,
would be interesting.

We close by mentioning possible applications of the
present approach. As in reference [31], it can be used for
studying a hole- or electron doped system; in this case
the ground state wavefunction derived here can be used
as a background state for the carrier motion. Other inter-
esting prospectives include the study of disorder [7] and
the application to frustrated systems in the presence of an
external field. A nice example here is the recently discov-
ered triangular bilayer S = 1 system Ba3Mn2O8 which
shows a spin gap, magnetization plateaus, and interesting
frustration effects [36].

The authors acknowledge useful discussions with C. Kühnert,
K. Meyer, and S. Sachdev as well as financial support by the
DFG (SFB 463 and 484).

Appendix A: Hamiltonian in the modified bond
boson basis

In the following, we list the first terms appearing in the
transformed bilayer Hamiltonian H̃ (10) for antiferromag-
netic J‖.

H(s; s) =
(
J⊥ + 2B

µ

1 + µ2

)
λ2

1 + λ2
,

H(x;x) =
(
J⊥ + 2B

µ

1 + µ2

)
1

1 + λ2
,

H(y; y) = J⊥ + 2B
µ

1 + µ2
, H(z; z) = J⊥,

H(x; s) =
(
J⊥ − 2B

µ

1 + µ2

)
λeiQRi

1 + λ2
,

H(y; s) = B
1− µ2

1 + µ2

λeiQRi

√
1 + λ2

,

H(x; y) =
−B√
1 + λ2

1− µ2

1 + µ2
,

H(xx; ss) =
J‖
2

(
1+µ2

) [(
1−λ2

)2 + µ2
(
1+λ2

)2]−4λ2µ2

(1 + λ2)2 (1 + µ2)2 ,

H(yy; ss) =
J‖
2

(
1− µ2

) [(
1 + µ2

)
+ λ2

(
1− µ2

)]
(1 + λ2) (1 + µ2)2 ,

H(zz; ss) =
J‖
2

(
1 + µ2

)
+ λ2

(
1− µ2

)
(1 + λ2) (1 + µ2)

·

These and the remaining terms can be obtained with the
help of Mathematica by inserting the transformation (8)
into H (6).

Appendix B: Bilinear Hamiltonian

We list here the coefficients of the bilinear boson Hamilto-
nian (14) which enter the expressions for the dispersions

given in (15). For shortness, we restrict ourselves to the
antiferromagnetic case, J‖ > 0, and use the abbreviation
γk = 1

2 (cos kx + cos ky).

Akx =
(
J⊥ −

2Bµ
1 + µ2

)
1− λ2

1 + λ2

+8J‖
λ2
(
2 + 3µ2 − λ2µ2

)
(1 + λ2)2 (1 + µ2)2

+2J‖γk

(
1− λ2

)2 (1 + 2µ2
)

+
(
1 + λ2

)2
µ4

(1 + λ2)2 (1 + µ2)2 ,

Aky = J⊥
1

1 + λ2
+ 2Bµ

1 + 2λ2

(1 + λ2) (1 + µ2)

+8J‖
λ2
(
1− 2λ2µ2

)
(1 + λ2)2 (1 + µ2)2

+2J‖γk

(
1 + µ2

)2 − λ2
(
1− µ2

)2
(1 + λ2) (1 + µ2)2 ,

Akz = J⊥
1

1 + λ2
+ 2Bµ

λ2

(1 + λ2) (1 + µ2)

+8J‖
λ2
(
1 + µ2

(
1− λ2

))
(1 + λ2)2 (1 + µ2)2 + 2J‖γk

(
1− λ2

1 + λ2

)
,

Bkx = 2J‖γk

(
1− λ2

)2 − (1 + λ2
)2
µ4 − 8λ2µ2

(1 + λ2)2 (1 + µ2)2 ,

Bky = 2J‖γk

(
1− µ4

)
+ λ2

(
1− µ2

)2
(1 + λ2) (1 + µ2)2 ,

Bkz = 2J‖γk

(
1 + λ2

)
+
(
1− λ2

)
µ4 + 2µ2

(1 + λ2) (1 + µ2)2 ,

Ck

i
= B

1− µ2

1 + µ2

1√
1 + λ2

+8J‖
λ2µ3

(1 + λ2)3/2 (1 + µ2)2
(1− γk) ,

Dk

i
= −4J‖γk

µ

(1 + λ2)3/2 (1 + µ2)

(
1 + λ2 1− µ2

1 + µ2

)
.

In the zero field case (B = 0, µ = 0) we have Ck = Dk = 0,
and therefore Ωkx = ωkx, Ωky = ωky. In the FPF phase
(B > Bc2, λ = ∞, µ = 1) we find Bk = Ck = Dk = 0,
and the Hamiltonian (14) is already diagonal in the t̃kα
operators.
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